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Abstract
In this paper, we study weakly coupled reaction-diffusion systems in
unbounded domains of R

2 or R
3, where the reaction terms are sums of

quasimonotone nondecreasing and nonincreasing functions. Such systems are
more complicated than those in many previous publications and little is known
about them. A comparison principle and global existence, and boundedness
theorems for solutions to these systems are established. Sufficient conditions
on the nonlinearities, ensuring the positively Ljapunov stability of the zero
solution with respect to H 2-perturbations, are also obtained. As samples of
applications, these results are applied to an autocatalytic chemical model and
a concrete problem, whose nonlinearities are nonquasimonotone. Our results
are novel. In particular, we present a solution to an open problem posed by
Escher and Yin (2005 J. Nonlinear Anal. Theory Methods Appl. 60 1065–84).

PACS numbers: 02.30.Jr, 02.30.Zz, 05.45.Yv
Mathematics Subject Classification: 35B35, 35K05, 34G20, 35K50, 35K45

1. Introduction

During the past two decades, systems of reaction-diffusion equations have been studied
extensively in different contexts and by various methods (see [6, 7, 10, 16, 19, 21, 22]
and references therein), motivated both by their widespread occurrence in interacting models
of chemical, biological and ecological phenomena, and by the rise of more complicated and
challenging issues in the context of coupled PDE systems.

In the study of the chemical basis of morphogenesis, the following reaction-diffusion
system, which models certain autocatalytic chemical morphogenetic processes (for example,
it explains how patterns might grow from a homogeneous situation and how diffusion of
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morphogenetic chemicals in animals’ skins during the growth of an embryo could drive
instability), was proposed by Turing [24] (see also [18, 25]):{

ut − d1�u = av − v2u in (0,∞) × �,

vt − d2�v = v2u − (a + 1)v + f (t, x) in (0,∞) × �.
(1.1)

Here, �, representing the capacity, is an open and connected domain in R
n(n � 1), d1, d2, a, c

are positive constants, f (t, x) is a positive function defined on (0,∞) × �,� stands for the
Laplacian operator with respect to the spatial variable (x1, . . . , xn) ∈ �,u = u(t, x) and
v = v(t, x) represent, respectively, the concentrations of two chemical species: an activator
and an inhibitor with diffusion rates d1 and d2, and hence u and v are nonnegative by their
physical interest. The function f (t, x) denotes a chemotactic sensitivity function. Further,
the constant a gives the rate at which the concentration of the inhibitor varies from high to
low. When � is a bounded domain in R

n, system (1.1), under various boundary conditions
(of Dirichlet, Neumann or regular oblique derivative type), has been given a thorough study
by Hollis et al [9], Morgan [15] and Rothe [19] for the global existence and boundedness of
solutions. Moreover, Leung and Ortega in [11] proved the existence of periodic solutions to
system (1.1) with Dirichlet boundary conditions or regular oblique derivative type boundary
conditions. However, in the chemostat, especially in a flow reactor, the selfullage of chemical
species cannot be ignored, namely, the following reaction-diffusion system,{

ut − d1�u = av − cu − v2u in (0,∞) × �,

vt − d2�v = v2u − (a + 1)v + f (t, x) in (0,∞) × �,
(1.2)

is often more realistic to describe the interacting process of chemical species, where the
constant c > 0 corresponds to the selfullage rate of the activator (cf [3, 4]). Biologically
or chemically, the most interesting problems in connection with this version of the model
are the global existence and the dynamics of nonnegative solutions. However, to our
knowledge, so far there have not been any dynamical results on system (1.2). We note
that the reaction functions h(u, v) := av−cu−v2u and k(u, v) := v2u− (a +1)v +f (t, x) in
v and in u, respectively, do not satisfy monotonicity (quasimonotone nonincreasing property,
quasimonotone nondecreasing property or mixed quasimonotone property). But in the study
of the dynamics of reaction-diffusion equations, the monotonicity of reaction functions
often plays an essential role, especially when one tries to establish a comparison principle
(see [7, 16, 21]). Of course, this question is more motivated from the mathematical point
of view than from the biological one, but it will help us to get more insight into the more
extensive class of problems.

Motivated by this problem, we study the following more general and complicated systems
of reaction-diffusion equations:⎧⎨⎩

ut − d1�u = f1(u, v) + g1(u, v) in D,

vt − d2�v = f2(u, v) + g2(u, v) in D,

u(t, x) = v(t, x) = 0 on S,

(1.3)

where d1, d2 are positive constants, � is an unbounded domain in R
n(n = 2 or 3) with an

unbounded inradius d(�) := supx∈� dist(x, ∂�), e.g. � is the whole space R
n, the exterior

�e of a bounded domain or the half-space R
n
+ = {x = (x1, . . . , xn) ∈ R

n; xn > 0} and
D := (0,∞) × �, S := [0,∞) × ∂�. The nonlinearities fi, gi ∈ C4(R2, R)(i = 1, 2)

are assumed to satisfy fi(0, 0) = gi(0, 0) = 0. Assume further that for fixed ui, fi(u1, u2)

is nondecreasing and gi(u1, u2) is nonincreasing in uj , j �= i, i, j = 1, 2. System (1.3)
is a widely used mathematical model for many chemical, physical, biological or ecological
phenomena. For details on biological and chemical models involving more general reaction-
diffusion systems of type (1.3) we refer to [8, 16, 21].
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On the one hand, since the functions f1 and g1 possess the monotonicity with respect
to only the variable v, the functions f2 and g2 possess the monotonicity with respect to only
the variable u, and every smooth function with one variable can be written as the sum of a
nondecreasing function and a nonincreasing function; the study on systems of type (1.3) is
quite useful. On the other hand, if � is an unbounded domain, Poincaré’s inequality does not
hold (cf [23, theorem 2.1]). Hence, one sees from the argument at the end of section 4 in [7]
that in this case the principle of linearized stability is not applicable.

In this paper, we first establish a comparison principle corresponding to system (1.3).
Then, using the comparison principle together with the abstract stability results developed
by Escher and Yin in [6, 7], we obtain the global existence and boundedness theorems for
nonnegative solutions to system (1.3). Moreover, we also present sufficient conditions on
reaction functions fi and gi(i = 1, 2) to ensure the positively Ljapunov stability of the zero
solution with respect to H 2-perturbations. As samples of applications, we apply our main
results to system (1.2) with f = 0 and to a concrete problem, where the nonlinearities are
nonquasimonotone. These results are novel.

Remark 1.1. Escher and Yin [7] have used the comparison principle for parabolic systems as
presented in [12] and abstract stability results for equilibria of parabolic evolution equations
established in [6] to investigate the stability of the zero solution to a special version of system
(1.3), which is given in the form⎧⎨⎩

ut − �u = �(u, v) in D,

vt − �v = �(u, v) in D,

u(t, x) = v(t, x) = 0 on S,

(1.4)

where the nonlinearities �(u, v) and �(u, v) are assumed to satisfy one of the following
monotonicity conditions:

(1) �(u, v) is nondecreasing with respect to v and �(u, v) is nondecreasing with respect
to u.

(2) �(u, v) is nondecreasing with respect to v and �(u, v) is nonincreasing with respect
to u.

(3) �(u, v) is nonincreasing with respect to v and �(u, v) is nonincreasing with respect to u.

Note that our nonlinearities in system (1.3) are more general than those in system (1.4).
Furthermore, the comparison principle used in [7] no longer suits system (1.3).

Remark 1.2. The main results in this paper give a solution to the following open problem
posed by Escher and Yin in [7, remarks (d)]:

‘We do not know whether or not the quasimonotonicity of �(u, v) and �(u, v) in
[7, theorem 1 and theorem 2] can be relaxed’.

2. Preliminaries

In this section, we introduce some notation, establish some conventions and describe some
results which are essential tools in the later sections.

Throughout this paper, L(X, Y ) denotes the space of all bounded linear operators from
the Banach space X to the Banach space Y with the usual operator norm ‖·‖L(X,Y ), and
L(X) := L(X,X), and D(A) stands for the domain of the linear operator A. We assume that
� is an unbounded domain in R

2 or in R
3. If the boundary ∂� of � is not empty it is assumed
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to be uniformly C4-regular; see Browder [2] for its precise definition. We write (1.3) in the
abstract form:

wt = A0w + G(w), (2.1)

where

w =
(

u

v

)
, A0 =

(
d1� 0

0 d2�

)
, G(w) =

(
f1(u, v) + g1(u, v)

f2(u, v) + g2(u, v)

)
.

For each i = 1, 2, set

fi(r, s) = rfi1(r, s) + sfi2(r, s), gi(r, s) = rgi1(r, s) + sgi2(r, s), (2.2)

for (r, s) ∈ R
2, where

fij (r, s) =
∫ 1

0
∂jfi(σ r, σ s) dσ, gij (r, s) =

∫ 1

0
∂jgi(σ r, σ s) dσ, j = 1, 2.

Let us first collect some tools that will frequently be used in the sequel, which may be
found in [6] or [7]; for detail, we refer to [1]. Let Hm(�) and Hm

0 (�) denote the usual Sobolev
spaces based on L2(�) so that H 0(�) = L2(�). We identify L2(�; R

2) with L2(�)×L2(�).
Similarly, we denote by Hm(�; R

2) the Hilbert space Hm(�)×Hm(�) with the inner product

(w, z)m =
∑

|α|�m

(Dαw,Dαz)0, w, z ∈ Hm(�; R
2),

where (w, z)0 = ∫
�
(w, z)

R
2 dx, and by Hm

0 (�; R
2) the space Hm

0 (�)×Hm
0 (�). We also write

CBU(�, R
2) for the Banach space of all bounded and uniformly continuous vector functions

w = (u, v) : � → R
2 with the norm

‖w‖CBU := sup
x∈�

|w(x)| = sup
x∈�

(|u(x)| + |v(x)|).

For each m ∈ N, let Cm
BU(�, R

2) denote the Banach space of all the functions w ∈ CBU(�, R
2)

which are m times continuously differentiable in �, with all the derivatives up to the order m
in CBU(�, R

2). They are endowed with the norm

‖w‖Cm
BU

=
∑

|α|�m

‖Dαw(x)‖CBU .

Moreover, given β ∈ (0, 1) and m ∈ N, let C
m+β

BU (�, R
2) denote the Banach space of all

w ∈ Cm
BU(�, R

2) such that Dαw with |α| = m are uniformly β-Hölder continuous on �. The
norm in C

m+β

BU (�, R
2) is given by

‖w‖
C

m+β

BU
= ‖w‖Cm

BU
+

∑
|α|=m

(
sup
x �=y

|Dαw(x) − Dαw(y)|
|x − y|β

)
.

We will also use the following Banach spaces:

Ĉ
m+β

BU (�, R
2) =

{{
w ∈ C

m+β

BU (�, R
2);w = 0 on ∂�

}
if m = 0, 1,{

w ∈ C
m+β

BU (�, R
2);w = 0 and �w = 0 on ∂�

}
if m = 2, 3.

Let us first consider the abstract Cauchy problem (2.1) in X0 := L2(�, R
2), where

D(A0) = H 2(�, R
2) ∩ H 1

0 (�, R
2).

Then A0 is a nonpositive self-adjoint operator in X0. Hence, σ(A0) ⊂ (−∞, 0], A0 is closed,
and A0 is sectorial. Note that A0 is the infinitesimal generator of an analytic C0-semigroup
{S(t)}t�0 defined on X0 (cf [8]). However, since G(w) is, in general, not a mapping from
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X0 into itself, the space X0 is not suited to (2.1). Here we follow the idea in [7] and hence
consider the abstract problem (2.1) in the Hilbert space X1 := H 2(�, R

2)∩H 1
0 (�, R

2). Since
1 ∈ ρ(A0) and A0 is closed, for any w ∈ X1, we may introduce the graph norm in X1 defined
as follows:

‖w‖X1 = ‖(A0 − 1)w‖X0 .

Clearly, by the open mapping theorem we know that the norm ‖·‖X1 is equivalent to the norm
‖·‖H 2 . Now we define the unbounded operator A1 : D(A1) ⊂ X1 → X1, which is the
restriction of A0 to X1 and is given by

D(A1) := D
(
A2

0

)
, A1w := A0w for all w ∈ D(A1).

As was shown in [20], we have

D(A1) = {
w ∈ H 4(�, R

2) ∩ H 1
0 (�, R

2);A0w ∈ H 1
0 (�, R

2)
}
.

We see that A1 is a nonpositive self-adjoint operator in X1 and hence A1 is a sectorial operator.
Similarly, the graph norm of A1 is equivalent to the norm ‖·‖H 4 . We write {T (t)}t�0 for the
analytic semigroup generated by A1 on X1. It is not difficult to see that

S(t)w = T (t)w, for t � 0, w ∈ X1.

Moreover, using arguments similar to those in [7, lemma 1], we can show that G ∈ C1(X1, X1).
Consequently, the standard existence-uniqueness theorems for abstract evolution equations
imply that the following abstract Cauchy problem,{

wt = A1w + G(w), t > 0,

w(0) = w0,
(2.3)

has a unique strong X1-solution on the maximal interval [0, Tmax) of existence.
In order to derive suitable a priori estimates for solutions to (2.1), we also need to

formulate (2.1) in a different functional analytic setting. Define a linear operator A2 in
XC := ĈBU(�, R

2) by

A2 : Ĉ
2+β

BU (�, R
2) ⊂ XC → XC, A2w := A0w for all w ∈ Ĉ

2+β

BU (�, R
2).

Then the operator A2 is closable and its closure, denoted by AC , generates an analytic
semigroup {W(t)}t�0 on XC (see [14, theorem 2.4]). At the same time, the domain of AC can
be characterized as

D(AC) = {
w ∈ W

2,p

loc (�, R
2), p � 1;w,A0w ∈ XC

}
.

Moreover, it is not difficult to verify that G ∈ C1(XC,XC). This implies that the abstract
Cauchy problem,{

wt = ACw + G(w), t > 0,

w(0) = w0,
(2.4)

has a unique strong XC-solution on the maximal interval
[
0, T C

max

)
of existence.

Let 0 < β < 1
2 . Since the space dimension n is equal to 2 or 3, the Sobolev embedding

theorem implies that the imbedding,

D(A0) ↪→ XC, D(A1) ↪→ Ĉ
2+β

BU (�, R
2),

is continuous (see [1]). Hence we have D(A1) ⊂ D(AC). Consequently, given w0 ∈ D(A1),
we can solve (2.3) and (2.4) with the same initial data w0.

The following proposition establishes the relation between the solutions of (2.3) and (2.4).
Proceeding similarly as in the proof of [5, theorem 1], we obtain

5



J. Phys. A: Math. Theor. 42 (2009) 235205 R-N Wang and Z W Tang

Proposition 2.1. Let an initial datum w0 ∈ D(A1) be given. Then there exists a unique
strong solution w(t) ∈ C1([0, Tmax),X1) to (2.3) defined on the maximal interval [0, Tmax) of
existence and there exists a unique strong solution z(t) ∈ C1([0, T C

max),XC) to (2.4) defined on
the maximal interval

[
0, T C

max

)
of existence. Moreover, Tmax = T C

max, w(t) = z(t) on [0, Tmax),
and if T C

max < ∞ then

lim sup
t→T C

max

‖z(t)‖XC
= ∞.

Definition 2.1 (Escher and Yin [7]). We say that the equilibrium w = (u, v) = (0, 0) of
(2.3) is positively Ljapunov stable if it is Ljapunov stable under nonnegative perturbations
in H 2(�, R

2) ∩ H 1
0 (�, R

2), i.e. if there is a τ > 0 such that for every ε > 0 there is a
δ > 0 with the following property: given w0 ∈ H 2(�, R

2) ∩ H 1
0 (�, R

2) with ‖w0‖H 2 � δ

and w0 � 0, the solution w(t) of (2.3) with the initial datum w(0) = w0 exists globally and
satisfies ‖w(t)‖H 2 � ε for all t � τ .

The following abstract stability result is proved by Escher and Yin in [6] (see also [7]).

Theorem 2.1. Let w0 ∈ X1 and let Tmax(w0) be the maximal existence time of the
corresponding solution w to (2.3) with the initial datum w0. Assume that:

(1) There exists a δ0 such that Tmax(w0) = ∞, if ‖w0‖X1 � δ0.
(2) There exists a M > 0 such that

‖w(t + 2)‖X1 � M‖w(t)‖X0, ∀ t � 0.

(3) There exists ε1 > 0 such that

(w(t),G(w(t) + A0w(t)))0 � 0, if ‖w(t)‖X1 � ε1.

Then (0, 0) is X1-Ljapunov stable.

3. The main results and their proofs

In order to prove the desired results, we first give the following important comparison results
for the nonquasimonotone coupled system (1.3). Let DT = (0, T ] × �, ST = (0, T ] × ∂�,
where T > 0 is any constant.

Theorem 3.1 (Comparison principle). Assume that there is a 6-tuple w = {̂u, v̂, u, v, ũ, ṽ}
of functions on DT such that w is bounded and continuous on DT and (̂u, v̂) � (̃u, ṽ) in DT .
Let

ρM = max
{

sup
(t,x)∈DT

ũ(t, x), sup
(t,x)∈DT

u(t, x)
}
,

σM = max
{

sup
(t,x)∈DT

ṽ(t, x), sup
(t,x)∈DT

v(t, x)
}
,

ρm = min
{

inf
(t,x)∈DT

û(t, x), inf
(t,x)∈DT

u(t, x)
}
,

σm = min
{

inf
(t,x)∈DT

v̂(t, x), inf
(t,x)∈DT

v(t, x)
}
,
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and let I1 and I2 be the intervals such that I1 ⊃ (ρm, ρM), I2 ⊃ (σm, σM). Moreover,
assume that f1(u, v) (g1(u, v)) is nondecreasing (nonincreasing) in I2 for all u ∈
I1, f2(u, v) (g2(u, v)) is nondecreasing (nonincreasing) in I1 for all v ∈ I2 and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ũt − d1�ũ − f1(̃u, ṽ) − g1(̃u, v̂) � ut − d1�u − f1(u, v) − g1(u, v)

� ût − d1�û − f1(̂u, v̂) − g1(̂u, ṽ) (t, x) ∈ DT ,

ṽt − d2�ṽ − f2(̃u, ṽ) − g2(̂u, ṽ) � vt − d2�v − f2(u, v) − g2(u, v)

� v̂t − d2�v̂ − f2(̂u, v̂) − g2(̃u, v̂) (t, x) ∈ DT ,

(̂u(t, x), v̂(t, x)) � (u(t, x), v(t, x)) � (̃u(t, x), ṽ(t, x)) (t, x) ∈ ST ,

(̂u(0, x), v̂(0, x)) � (u(0, x), v(0, x)) � (̃u(0, x), ṽ(0, x)) x ∈ �.

(3.1)

Then 6-tuple w of functions satisfies the following relation:

(̂u(t, x), v̂(t, x)) � (u(t, x), v(t, x)) � (̃u(t, x), ṽ(t, x)) (t, x) ∈ DT .

Proof. Let (M1,M2) � (0, 0) be any constant vector such that

(M1,M2) � (̃u(t, x), ṽ(t, x)) on DT ,

and let (u3, u4) = (M1−u1,M2−u2). Consider the following extended system of 4-equalities:⎧⎪⎪⎨⎪⎪⎩
u1t − d1�u1 = f1(u1, u2) + g1(u1,M2 − u4),

u3t − d1�u3 = −f1(M1 − u3,M2 − u4) − g1(M1 − u3, u2),

u2t − d2�u2 = f2(u1, u2) + g2(M1 − u3, u2),

u4t − d2�u4 = −f2(M1 − u3,M2 − u4) − g2(u1,M2 − u4).

Define
F1(u1, u2, u3, u4) := f1(u1, u2) + g1(u1,M2 − u4),

F3(u1, u2, u3, u4) := −f1(M1 − u3,M2 − u4) − g1(M1 − u3, u2),

F2(u1, u2, u3, u4) := f2(u1, u2) + g2(M1 − u3, u2),

F4(u1, u2, u3, u4) := −f2(M1 − u3,M2 − u4) − g2(u1,M2 − u4).

It is easily seen from the quasimonotone nondecreasing property of fi(i = 1, 2) and the
quasimonotone nonincreasing property of gi(i = 1, 2) that for each i = 1, . . . , 4, Fi

is quasimonotone nondecreasing, i.e., for fixed ui, Fi(u1, u2, u3, u4) is nondecreasing in
uj , j �= i, i, j = 1, . . . , 4. Moreover, a direct computation shows that the vector
(p1, p2, p3, p4) := (̃u, ṽ,M1 − û,M2 − v̂) satisfies

p1t − d1�p1 − F1(p1, p2, p3, p4)� ut − d1�u− F1(u, v,M1 − u,M2 − v), (t, x) ∈ DT ,

p2t − d2�p2 − F2(p1, p2, p3, p4)� vt − d2�u− F2(u, v,M1 − u,M2 − v), (t, x) ∈ DT ,

p3t − d1�p3 − F3(p1, p2, p3, p4) � −ut + d1�(M1 − u) − F3(u, v,M1 − u,M2 − v),

(t, x) ∈ DT ,

p4t − d2�p4 − F4(p1, p2, p3, p4) � −vt + d2�(M2 − v) − F4(u, v,M1 − u,M2 − v),

(t, x) ∈ DT ,

(p1, p2, p3, p4) � (u, v,M1 − u,M2 − v), (t, x) ∈ ST ,

(p1(0, x), p2(0, x), p3(0, x), p4(0, x)) � (u(0, x), v(0, x),M1 − u(0, x),M2 − v(0, x)),

x ∈ �.

Now let qi = pi − ri , where (r1, r2, r3, r4) := (u, v,M1 − u,M2 − v). Then we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qit − di�qi � Fi(p1, p2, p3, p4) − Fi(r1, r2, r3, r4)

=
4∑

j=1

∂Fi(τ1, τ2, τ3, τ4)

∂uj

qj , (t, x) ∈ DT ,

qi(t, x) � 0, (t, x) ∈ ST ,

qi(0, x) � 0, x ∈ �, (i = 1, . . . , 4),

7
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where d3 = d1, d4 = d2 and (τ1, τ2, τ3, τ4) is an intermediate value between (p1, p2, p3, p4)

and (r1, r2, r3, r4). The quasimonotone nondecreasing property of Fi implies that

cij ≡ ∂Fi(τ1, τ2, τ3, τ4)

∂uj

� 0 (i �= j, i, j = 1, . . . , 4).

Moreover, the smoothness assumption on Fi and boundedness assumption on w ensure that
cij are bounded on DT for all i, j = 1, . . . , 4. Then it follows from a direct application of
[17, lemma 5.2] that

q := (q1, . . . , q4) � 0 on DT ,

i.e.

(p1, p2, p3, p4) � (r1, r2, r3, r4) on DT .

This yields

(̃u, ṽ,M1 − û,M2 − v̂) � (u, v,M1 − u,M2 − v) on DT .

Hence, (̂u(t, x), v̂(t, x)) � (u(t, x), v(t, x)) � (̃u(t, x), ṽ(t, x)) on DT . The proof is
complete. �

Remark 3.1. Theorem 3.1 will be an important tool for showing the boundedness of the
solutions of (2.3) on the maximal interval [0, Tmax) of existence (see the proof of theorem 3.2).

In the following, given w0 ∈ D(A1), we denote the maximal existence time of (2.3)
by Tmax(w0). The local existence and uniqueness of solution to (2.3) follow from the
functional analytic frames and proposition 2.1 in section 2. Now let w(t) = (u(t), v(t)) ∈
C1([0, Tmax),X1) be a strong solution of (2.3) with w(0) = w0 ∈ X1. Let T be any given
constant such that T < Tmax, then by proposition 2.1 we have w(t) ∈ C1([0, T ], XC). Hence,
it follows from the property of space XC that w is bounded on DT . Let I ′

1 and I ′
2 be the

intervals
(

inf(t,x)∈DT
u(t, x), sup(t,x)∈DT

u(t, x)
)

and
(

inf(t,x)∈DT
v(t, x), sup(t,x)∈DT

v(t, x)
)
,

respectively.
The global existence and boundedness of solutions to (2.3) are given in the following

theorem.

Theorem 3.2. Assume that

(1) (1.3) has a coupled upper bound (η1, η2) in relation to (0, 0), i.e., (η1, η2) is a constant
vector with ηi > 0 (i = 1, 2) satisfying

f1(η1, η2) + η1g11(η1, 0) � 0, f2(η1, η2) + η2g22(0, η2) � 0,

g12(0, η2) � 0, g21(η1, 0) � 0,

and
(2) f1(u, v) (g1(u, v)) is nondecreasing (nonincreasing) in I ′

2 ∪(0, η2) for all u ∈ I ′
1 ∪(0, η1)

and f2(u, v) (g2(u, v)) is nondecreasing (nonincreasing) in I ′
1 ∪ (0, η1) for all v ∈

I ′
2 ∪ (0, η2).

Then there exist constants δ0 > 0 and M > 0 such that (2.3) has a unique strong solution
w(t) with w(t) � (0, 0), which is defined for all time t � 0, namely, Tmax(w0) = ∞, and

sup
t�0

‖w(t)‖XC
� M, (3.2)

provided w0 � (0, 0) and ‖w0‖X1 � δ0.

Proof. Set

δ0 := M0
−1 min{η1, η2},

8
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where M0 is the embedding constant from the Sobolev space X1 to XC , i.e. M0 is a positive
constant such that

‖w‖XC
� M0‖w‖X1 , (3.3)

for all w ∈ X1.
Choosing w0 ∈ D(A1) with w0 � 0 and ‖w‖X1 � δ0, then we have

(η1, η2) � w(0) � (0, 0).

Since (η1, η2) is a coupled upper bound in relation to (0, 0), it follows that (η1, η2) and
(0, 0) satisfy the inequalities in (3.1), with (̂u, v̂) and (̃u, ṽ) replaced by (0, 0) and (η1, η2),
respectively. An application of theorem 3.1 shows that

(η1, η2) � w(t, x) � (0, 0), (3.4)

for all (t, x) ∈ DT (= [0, T ] × �). Hence, it follows from the arbitrariness of T (<Tmax)

that the inequality (3.4) holds for all (t, x) ∈ [0, Tmax(w0)) × �. Moreover, in view of
proposition 2.1, it follows from a standard continuation argument that there exists a constant
M � 0 such that

Tmax(w0) = ∞, and sup
t�0

‖w(t)‖XC
� M,

provided w0 � 0 and ‖w‖X1 � δ0. This completes the proof. �

Now we are in a position to present our stability results:

Theorem 3.3. Assume that

(1) the hypotheses (1) and (2) in theorem 3.2 hold, and
(2) there exists ε1 > 0 such that

(w(t),G(w(t)) + A0w(t))0 � 0, if ‖w(t)‖X1 � ε1. (3.5)

Then the trivial solution w = (0, 0) of (1.3) is positively Ljapunov stable.

Proof. Let w(t) = (u(t), v(t)) ∈ C1([0,∞),X1) be the strong solution with w(0) = w0.
From the decomposition (2.2) we can write

G(w(t)) = A(t)w(t), t � 0, (3.6)

where operators A(t) are given by

A(t) =
(

f11(u(t), v(t)) + g11(u(t), v(t)) f12(u(t), v(t)) + g12(u(t), v(t))

f21(u(t), v(t)) + g21(u(t), v(t)) f22(u(t), v(t)) + g22(u(t), v(t))

)
, t � 0.

Since w(t) = (u(t), v(t)) is uniformly bounded by (3.2) and operators A(t) carry a symmetric
structure we have A ∈ C1(R+, L(X0)) and there exists a constant M1 such that

‖A(t)‖L(X0) � M1 for t � 0. (3.7)

At the same time, since AC is the generator of the analytic semigroup {W(t)}t�0 on XC and
the Fré chet derivative of G ∈ C1(XC,XC) is bounded on bounded subsets of XC , we have
the following a priori estimate:∥∥∥∥dw(t)

dt

∥∥∥∥
XC

� M2 for t � 0, (3.8)

where M2 is a positive constant (cf [5, Proposition 4.1]). Note further that

dA(t)

dt
=

(
a11(t) a12(t)

a21(t) a22(t)

)
,

9
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where

a11(t) = ∂1f11(u(t), v(t))u′(t) + ∂1g11(u(t), v(t))u′(t)
+ ∂2f11(u(t), v(t))v′(t) + ∂2g11(u(t), v(t))v′(t),

a12(t) = ∂1f12(u(t), v(t))u′(t) + ∂1g12(u(t), v(t))u′(t)
+ ∂2f12(u(t), v(t))v′(t) + ∂2g12(u(t), v(t))v′(t),

a21(t) = ∂1f21(u(t), v(t))u′(t) + ∂1g21(u(t), v(t))u′(t)
+ ∂2f21(u(t), v(t))v′(t) + ∂2g21(u(t), v(t))v′(t),

a22(t) = ∂1f22(u(t), v(t))u′(t) + ∂1g22(u(t), v(t))u′(t)
+ ∂2f22(u(t), v(t))v′(t) + ∂2g22(u(t), v(t))v′(t),

for t � 0. Consequently, using (3.2) and (3.8), we deduce that there is a constant M3 > 0
such that ∥∥∥∥dA(t)

dt

∥∥∥∥
L(X0)

� M3 for t � 0. (3.9)

Moreover, it follows from (3.7) and (3.9) that

‖A(t)‖L(X0) +

∥∥∥∥dA(t)

dt

∥∥∥∥
L(X0)

� M4 for t � 0, (3.10)

where M4 is a positive constant.
Consider the following homogeneous Cauchy problem,

qt = (A0 + A(t))q, t > 0. (3.11)

Because w(t) is the unique strong solution to (2.3), it follows that w(t) is also a mild solution
to (3.11). Moreover,

w(t) = U(t, s)w(s) for t ∈ [s, s + 2], (3.12)

where {U(t, s); 0 � s � t � s + 2} is the evolution system associated with the operator
{A0 + A(t); t ∈ [s, s + 2]}. It follows from (3.10) and [6, proof of lemma 3.4] that there exists
a constant M5, which is independent of s, such that

max
t∈[s,s+2]

‖U(t, s)‖L(X0) � M5.

Hence combining this with (3.12), we find

‖w(t)‖X0 � M5‖w(s)‖X0 , t ∈ [s, s + 2]. (3.13)

Moreover, using (3.10), by the arguments similar to those in [5], we can show that there exists
a constant M6 > 0 such that

‖A0w(s + 2)‖X0 � M6 max
t∈[s,s+2]

‖w(s)‖X0 .

Using (3.13) we have

‖A0w(s + 2)‖X0 � M7‖w(s)‖X0 , s � 0.

Since the norm ‖·‖X1 is equivalent to the norm ‖·‖H 2 , it follows that there exists a K0 > 0
such that

‖w(s + 2)‖X1 � K0‖w(s)‖X0 , s � 0. (3.14)

Finally, in view of theorem 2.1, by theorem 3.2 and the estimates (3.5) and (3.14), we
obtain the assertion of the theorem. �

10
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Remark 3.2. The main idea of the proof of theorem 3.3 comes from the nice proof of [7,
lemma 6].

The following theorem gives some sufficient conditions on the nonlinearities, which
ensure the positively Ljapunov stability of the zero solution to (1.3).

Theorem 3.4. Let the hypotheses (1) and (2) in theorem 3.2 hold. In addition, let us assume
that there exists a constant ε0 > 0 such that one of the following conditions is satisfied:

(H1)f11(w) < 0, g11(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0 and

g11(w)g22(w) − (g12(w) + g21(w))2 � 0,

(H2)f22(w) < 0, g11(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0 and

g11(w)g22(w) − (g12(w) + g21(w))2 � 0,

(H3)f11(w) < 0, g22(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0 and

g11(w)g22(w) − (g12(w) + g21(w))2 � 0,

(H4)f22(w) < 0, g22(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0 and

g11(w)g22(w) − (g12(w) + g21(w))2 � 0,

(H5)f11(w) < 0, g11(w) < 0, 4f11(w)g22(w) − (f21(w) + g12(w))2 � 0 and

g11(w)f22(w) − (g21(w) + f12(w))2 � 0,

(H6)f22(w) < 0, g11(w) < 0, 4f11(w)g22(w) − (f21(w) + g12(w))2 � 0 and

g11(w)f22(w) − (g21(w) + f12(w))2 � 0,

(H7)f11(w) < 0, g22(w) < 0, 4f11(w)g22(w) − (f21(w) + g12(w))2 � 0 and

g11(w)f22(w) − (g21(w) + f12(w))2 � 0,

(H8)f22(w) < 0, g22(w) < 0, 4f11(w)g22(w) − (f21(w) + g12(w))2 � 0 and

g11(w)f22(w) − (g21(w) + f12(w))2 � 0,

(H9)f11(w), f22(w), g11(w), g22(w) � 0, f12(w) + f21(w) = 0 and

g12(w) + g21(w) = 0,

(H10)f22(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0, g11(w) � 0,

g22(w) � 0 and g12(w) + g21(w) = 0,

(H11)f11(w) < 0, 4f11(w)f22(w) − (f12(w) + f21(w))2 � 0, g11(w) � 0,

g22(w) � 0 and g12(w) + g21(w) = 0,

(H12)g22(w) < 0, 4g11(w)g22(w) − (g12(w) + g21(w))2 � 0, f11(w) � 0,

f22(w) � 0 and f12(w) + f21(w) = 0,

(H13)g11(w) < 0, 4g11(w)g22(w) − (g12(w) + g21(w))2 � 0, f11(w) � 0,

f22(w) � 0 and f12(w) + f21(w) = 0,

provided w � 0 and |w| � ε0. Then the trivial solution w = (0, 0) of (1.3) is positively
Ljapunov stable.

Proof. We prove that if one of hypotheses (H1), (H5), (H9) and (H11) holds, then we have

(y,G(y) + A0y)0 � 0, (3.15)

provided y � 0 and |y| � ε0. The assertion (3.15), under other hypotheses of theorem, may
be obtained by a similar argument.

11
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Let y = (y1, y2) ∈ X1. By (2.3) and the decomposition (2.2), a straightforward
calculation yields:

(y,G(y) + A0y)0 = (y1,�y1)0 + (y2,�y2)0 + (y1, f1(y1, y2))0 + (y1, g1(y1, y2))0

+ (y2, f2(y1, y2))0 + (y2, g2(y1, y2))0

= −‖y1‖2
H 1

0
− ‖y2‖2

H 1
0

+ (y1, y1f11(y1, y2) + y2f12(y1, y2))0

+ (y2, y1f21(y1, y2) + y2f22(y1, y2))0 + (y1, y1g11(y1, y2))0

+ (y1, y2g12(y1, y2))0 + (y2, y1g21(y1, y2) + y2g22(y1, y2))0.

Let the hypothesis (H1) hold. We write (y,G(y) + A0y)0 in the form

(y,G(y) + A0y)0 = −‖y1‖2
H 1

0
− ‖y2‖2

H 1
0

+ a0 + a1 + b0 + b1, (3.16)

where

a0 =
(

f11,

(
y1 +

f12 + f21

2f11
y2

)2
)

0

, a1 =
(

4f11f22 − (f12 + f21)
2

4f11
, y2

2

)
0

,

b0 =
(

g11,

(
y1 +

g12 + g21

2g11
y2

)2
)

0

, b1 =
(

4g11g22 − (g12 + g21)
2

4g11
, y2

2

)
0

.

Then it follows that

ai � 0 and bi � 0, i = 0, 1,

and hence

(y,G(y) + A0y)0 � a0 + a1 + b0 + b1 � 0,

provided y � 0 and |y| � ε0. If the hypothesis (H5) holds, then we write (y,G(y) + A0y)0

in the form

(y,G(y) + A0y)0 = −‖y1‖2
H 1

0
− ‖y2‖2

H 1
0

+ c0 + c1 + d0 + d1,

where

c0 =
(

f11,

(
y1 +

f21 + g12

2f11
y2

)2
)

0

, c1 =
(

4f11g22 − (f21 + g12)
2

4f11
, y2

2

)
0

,

d0 =
(

g11,

(
y1 +

g21 + f12

2g11
y2

)2
)

0

, d1 =
(

4g11f22 − (g21 + f12)
2

4g11
, y2

2

)
0

.

It follows that

ci � 0 and di � 0, i = 0, 1,

and hence

(y,G(y) + A0y)0 � c0 + c1 + d0 + d1 � 0,

provided y � 0 and |y| � ε0.
Let the hypothesis (H9) hold, then

(y,G(y) + A0y)0 � −‖y1‖2
H 1

0
− ‖y2‖2

H 1
0

+ (y1, y2f12(y1, y2))0 + (y2, y1f21(y1, y2))0

+ (y1, y2g12(y1, y2))0 + (y2, y1g21(y1, y2))0 � 0,

provided y � 0 and |y| � ε0.
Finally, if the hypothesis (H11) holds, then we have

(y,G(y) + A0y)0 � a0 + a1 + (y1, y2g12(y1, y2))0 + (y2, y1g21(y1, y2))0 � 0,

provided y � 0 and |y| � ε0, where ai(i = 1, 2) are functions appearing in (3.16).

12
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Hence by (3.3), one of the hypotheses (H1) − (H13) ensures

(y,G(y) + A0y)0 � 0, (3.17)

provided y � 0 and ‖y‖X1 � ε1, where ε1 := ε0/M0.
Finally, combining theorem 2.1 and the estimates (3.2), (3.14) and (3.17), we complete

the proof. �

Remark 3.3.

(1) One sees that theorem 3.1 (the comparison principle) established by us plays a crucial
role in showing the global existence and the asymptotic behavior of the solution.

(2) Theorems 3.3 and 3.4 cover recent results in [6, 7].
(3) The results of theorems 3.2, 3.3 and 3.4 are also true for bounded domains in R

n(n � 1)

with a smooth boundary.

4. Applications

In this section, we apply our main results to a Brusselator problem and to a concrete example.
The global existence of solutions is proved. Furthermore, we show that in both cases the trivial
solution (0, 0) is positively Ljapunov stable.

Example 1. Consider the reduced Brusselator problem,⎧⎪⎪⎨⎪⎪⎩
ut − d1�u = av − cu − v2u in D,

vt − d2�v = v2u − (a + 1)v in D,

u(t, x) = v(t, x) = 0 on S,

u(0, x) = u0(x) � 0, v(0, x) = v0(x) � 0 in �,

(4.1)

where d1, d2, a, c are positive constants and satisfy the following condition:

a2

a + 1
< 4c. (4.2)

Let us denote

f1(u, v) = av − cu, g1(u, v) = −v2u,

f2(u, v) = v2u, g2(u, v) = −(a + 1)v.

Then for each i = 1, 2, fi(u, v) is quasimonotone nondecreasing in R
+, gi(u, v) is

quasimonotone nonincreasing in R
+, namely, the functions fi, gi, i = 1, 2, satisfy the

hypothesis (1) in theorem 3.2, and the decomposition (2.2) implies

f11(u, v) = −c, f12(u, v) = a, g11(u, v) = −v2, g12(u, v) = 0,

f21(u, v) = 0, f22(u, v) = uv, g21(u, v) = 0, g22(u, v) = −(a + 1).
(4.3)

Let w := (u, v) ∈ X1. Using Young’s inequality in the form

uv � εu2 +
1

4ε
v2, u, v � 0, ε > 0,

a straightforward calculation yields that

(w,G(w) + A0w)0 = (u,�u)0 + (v,�v)0 + (u, f1(u, v))0 + (u, g1(u, v))0

+ (u, f2(u, v))0 + (v, g2(u, v))0

� −c

∫
�

u2 dx − (a + 1)

∫
�

v2 dx + a

∫
�

uv dx +
∫

�

uv3 dx −
∫

�

u2v2 dx

13
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� a2

4c

∫
�

v2 dx −
∫

�

u2v2 dx − (a + 1)

∫
�

v2 dx +
∫

�

uv3 dx

�
(

a2

4c
− a − 1

) ∫
�

v2 dx +
∫

�

uv3 dx.

Hence, by the hypothesis (4.2), if we choose w � 0 such that

|w| �
√

a + 1 − a2

4c
,

then

(w,G(w) + A0w)0 � 0,

provided ‖w‖X1 � 1
C0

√
(a + 1 − a2

4c
), where C0 > 0 is the constant appearing in (3.3). At the

same time, take positive constants η1 and η2 satisfying{
η1η2 � a + 1,

aη2 � cη1.
(4.4)

Then, by the decomposition (4.3), the constant vector (η1, η2) is a coupled upper bound in
relation to (0, 0) of system (4.1).

We are specially interested in the global existence of nonnegative solutions and the
stability of equilibria to system (4.1). Now, we apply theorem 3.2 and theorem 3.3 to obtain
the following results.

Theorem 4.1. Let the hypothesis (4.2) hold. Then the following statements are true:

(1) there exists a unique strong solution w(t, x) to (4.1) defined on the maximal interval of
existence, and

(2) the nonnegative solution of (4.1) is global, provided ‖(u0, v0)‖X1 � 1
C0

√(
a + 1 − a2

4c

)
,

where C0 > 0 is the constant appearing in (3.3). Moreover, the trivial solution w = (0, 0)

to (4.1) is positively Ljapunov stable.

Example 2. Next we consider the weakly coupled reaction-diffusion system,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − d1�u = −u eu2

+ vl(u) − λu2pv − u3(u2p−2 − 1) eu in D,

vt − d2�v = −v ev2
+ ur(v) − v ev2 − λu3v2 in D,

u(t, x) = v(t, x) = 0 on S,

u(0, x) = u0(x) � 0, v(0, x) = v0(x) � 0 in �,

(4.5)

where λ > 0, p > 1 are constants and l, r ∈ C3(R, R) such that 0 � l � 1, 0 � r � 1.
Set

f1(u, v) = −u eu2
+ vl(u), f2(u, v) = −v ev2

+ ur(v),

g1(u, v) = −λu2pv + u3(u2p−2 − 1) eu, g2(u, v) = −v ev2 − λu3v2,

and write

f11(u, v) = −eu2
, f12(u, v)= l(u), g11(u, v)= u2(u2p−2 − 1) eu, g12(u, v) = −λu2p,

f21(u, v) = r(v), f22(u, v) = −ev2
, g21(u, v) = −λu2v2, g22(u, v) = −ev2

.

Then for each i = 1, 2, fi(u, v) is quasimonotone nondecreasing in R, gi(u, v) is
quasimonotone nonincreasing in R, f11 < 0, g22 < 0 and

(f12(u, v) + f21(u, v))2 = (l(u) + r(v))2 � 4 � 4f11(u, v)f22(u, v),

for (u, v) ∈ R
2. Moreover, one can easily check that

(g12(u, v) + g21(u, v))2 � 4g11(u, v)g22(u, v),
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provided |w| is sufficiently small, and (η1, η2) = (1, 1) is a coupled upper bound in relation
to (0, 0) of system (4.5). Hence it follows from theorem 3.2 and theorem 3.4 that (4.5) has a
unique global solution, w = (u, v), satisfying (u, v) � (1, 1), provided w0 = (u0, v0) � 0
and ‖w0‖X1 is sufficiently small, and the trivial solution (0, 0) is positively Ljapunov stable.

Remark 4.1. A coupled system with polynomial nonlinearities has been studied by Escher and
Yin [6]. However, since the nonlinearities in system (4.5) have no monotonicity properties,
the stability result established in [6] cannot be applied to system (4.5).
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